
 

 
 
    A
perv
cach
pap
Pro
flex
them
Com
user
The
min
spe
com
nod
the 
rece
valu
can
valu
be 
inst
 
 
    I
Pro
 

     O
wir
Ope
rang
fash
buil
wir
ad-h
add
the 

Usin
C

 

Abstract- Cac
vasive Interne
hing has been

per, we pro
obabilistic De
xibility grante
m as speci
mbination of P
r-specified co
e analytical m
nimizing the c
cified cons

mmunicate the
des can be ma

access point
eives an inva
ue to all its pe

n be further o
ues using a ti
optimized by

tead of all the 

Index Terms
opagation. 

On wireless c
eless devices
erating in ad-
ge of each oth
hion without i
lt in to broa
eless network
hoc mode v

dition, all wire
same SSID a

ng Pro
Consis

 

 Depa

        

ching is an 
et access. To r
n widely used 
pose a gen

elta Consisten
ed by existin
al cases. W
Push and Pull
onsistency req

model of FCPP
consistency m
sistency req
eir version nu
ade to replicat
t to all other

alidation mess
eers. The com
optimized by
imer. All the p
y passing the
nodes.  

s- Cache Co

I. IN

omputer netw
s to directly 
-hoc mode al
her to discover
involving cen
adband wirel
k, each wirele
versus the al
eless adapters

and the same c

opagat
stency

J

artment of Co

       

important te
reduce data a
as an importa

neral consiste
ncy (PDC), w
ng consistenc

We also pro
l (FCPP) algo
quirements un
P is used to d

maintenance c
quirement.The
umbers to the
te the messag
r nodes. Whe
sage, it can b

mmunication b
y periodically 
previously me
e data to the

onsistency, P

NTRODUCTION

works, ad-hoc m
communicat

llows all wir
r and commun

ntral access po
ess routers to

ess adapter mu
lternative infra
s on the ad-ho
channel numb

tion T
y in W

J.Arumai Ru

omputer Scienc

Thanj

echnique to 
ccess cost and
ant technique.
ency model 
which integra
cy models, c
opose the F

orithm which s
nder the PDC 
derive the bal
cost and ensur
e cached 

eir peers. The 
es sent to the
en a cached 

be made to p
etween cache

communicat
entioned proc

e nearest neig

PDC Model,

N 

mode is a met
te with each
reless devices
nicate in peer-
oints (includin
o set up an 
ust be configu
astructure mo
oc network m
ber. When a 

echniq
Wireles

 
uban , D.Sel

ce and Engine

javur, Tamil N

support 
d delay, 
  In this 

called 
ates the 
covering 
Flexible 
satisfies 
model. 

lance of 
ring the 

nodes 
cached 

em from 
system 

ass this 
d nodes 
ting the 
cess can 
ghbours 

, Virus 

thod for 
h other. 
s within 
-to-peer 

ng those 
ad-hoc 

ured for 
ode. In 

must use 
cached 

sys
thi
the
dat
con
 
 Ex
 
Ex
sev
off
the
suc
and
sim
sol
pos
late
tim
sol
 

 
 

ques t
ss Ad-

lvam , L.Din

eering, Periya

Nadu, India 

stem receives 
s value to all 

e cached node
ted data amo
nsistent and u

xample of Ad H

xample 1: In a
veral comman
ficers. Each o
e soldiers nee
ch as the detai
d new comm

milar mission
ldier accessed
ssible that ne
er. It saves a 

me if later acc
ldier who has 

to Enh
hoc N

nesh  

ar Maniamma

an invalidatio
its peers and

es. This helps
ong all the n
up dated data a

Hoc Network

a battlefield, 
nding officers 
officer has a re
ed to access th
iled geograph

mands. The ne
ns and thus 
d a data item
earby soldiers
large amount 
esses to the sa
the data inste

Fig 1.1 A

hance 
Networ

i University 

on message, i
d hence the tim
s in maintaini
nodes. This h
among all the 

an ad hoc ne
and a group o
elatively pow
he data center

hic information
eighboring s
share commo

m from the da
 access the s
of battery po

ame data are 
ad of the fara

 

Ad Hoc Network 

 

Cache
rks  

t can be made
mer is update
ing consistent
helps in mai
nodes. 

twork may co
of soldiers aro

werful data cen
rs to get vari
n, enemy info
soldiers tend 
on interests.

ata center, it 
ame data so

ower, bandwi
served by the

away data cen

e 

e to pass 
ed for all 
t and up 
intaining 

onsist of 
ound the 
nter, and 
ous data 

ormation, 
to have 

. If one 
is quite 

me time 
idth, and 
e nearby 

nter. 

 

J.Arumai Ruban et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3910-3916

3910



Example 2: 
    Recently, many mobile info station systems have been 
deployed to provide information for mobile users. This info 
stations deployed by tourist information center may provide 
maps, pictures, history of attractive sites. Info station deployed 
by a restaurant may provide menus. Due to limited radio range, 
an info station can only cover a limited geographical area. If a 
mobile user, says Jane, moves out of the info station range, she 
will not be able to access the data provided by the info station. 
However, if mobile users are able to form an ad hoc network, 
they can still access the information. In such an environment, 
when Jane’s request is forwarded to the info station by other 
mobile users, it is very likely that one of the nodes along the 
path has already cached the requested data. Then, this node can 
send the data back to Jane to save time and bandwidth. 

 

II. LITERATURE SURVEY 

    
A) Achieving Flexible Cache Consistency for Pervasive 

Internet Access 
    They consider a commonly used system model where each 
data object is associated with a single data source node. Only the 
data source node can update the source. Each data object is  
cached by a collection of caching nodes. The data copies held by 
the caching nodes are called cache copies. There are two basic 
mechanisms for cache consistency maintenance: push and pull. 
Using push, the data source node proactively informs the 
caching nodes of cache information. Using pull, a caching node 
fetches cache information from the data source node. We also 
assume that the data source node and the caching nodes have 
synchronized clocks. 
 
B) Supporting Cooperative Caching in Ad Hoc Networks 
 
    Most researches in ad hoc networks focus on routing and not 
much work has been done on data access. A common technique 
used to improve the performance of data access is caching. 
Cooperative caching, which allows the sharing and coordination 
of cached data among multiple nodes, can further explore the 
potential of the caching techniques. Due to mobility and 
resource constraints of ad hoc networks, cooperative caching 
techniques designed for wired networks may not be applicable 
to ad hoc networks. In this paper, they design and evaluate 
cooperative caching techniques to efficiently support data access 
in ad hoc networks. They first propose two schemes: 
CacheData, which caches the data, and CachePath, which 
caches the data path. After analyzing the performance of those 
two schemes, they propose a hybrid approach (HybridCache), 
which can further improve the performance by taking advantage 
of CacheData and CachePath while avoiding their weaknesses. 
Cache replacement policies are also studied to further improve 
the performance. Simulation results show that the proposed 

schemes can significantly reduce the query delay and message 
complexity when compared to other caching schemes. On the 
other hand, our evaluation results show that FCPP effectively 
satisfies arbitrarily specified consistency requirements. The 
results also show that FCPP can save up to 50 percent of the 
traffic overhead and reduce the query delay by up to 40 percent, 
compared with the widely used Pull with TTR algorithm. 
 
C) Maintaining Strong Cache Consistency in the World-Wide 

Web 
 

As the Web continues to explode in size, caching becomes 
increasingly important. With caching comes the problem of 
cache consistency. Conventional wisdom  holds that strong 
cache consistency is too expensive for the Web, and weak 
consistency methods such as Time-To-Live (TTL) are most 
appropriate. This study compares three consistency approaches: 
adaptive TTL, polling-every-time and invalidation, using 
prototype implementation and trace replay in a simulated 
environment. Our results show that invalidation generates less 
or a comparable amount of network traffic and server workload 
than adaptive TTL and has a slightly lower average client 
response time, while polling-every-time generates more network 
traffic and longer client response times. We show that, contrary 
to popular belief, strong cache consistency can be maintained 
for the Web with little or no extra cost than the current weak 
consistency approaches, and it should be maintained using 
invalidation based protocol. 
 

III. IMPLEMENTATION 

 

A. Maintain Cache Consistency: 

    There is a cache consistency issue in both Cache Data and 
Cache Path. We have done some work [9], [10] on maintaining 
strong cache consistency in single-hop based wireless 
environment. However, due to bandwidth and power constraints 
in ad hoc networks, it is too expensive to maintain strong cache 
consistency, and the weak consistency model is more attractive. 
A simple weak consistency model can be based on the Time-To-
Live (TTL) mechanism, in which a node considers a cached 
copy up-to-date. If it’s TTL has not expired, It removes the map 
from its routing table (or removes the cached data) if the TTL 
expires. As a result, future requests for this data will be 
forwarded to the data center. Due to TTL expiration, some 
cached data may be invalidated. Usually, invalid data are 
removed from the cache. Sometimes, invalid data may be useful. 
As these data have been cached by the node, it indicates that the 
node is interested in these data. When a node is forwarding a 
data item and it finds there is an invalid copy of that data in the 
cache, it caches the data for future use. To save space, when a 

J.Arumai Ruban et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3910-3916

3911



cached data item expires, it is removed from the cache while its 
id is kept in “invalid” state as an indication of the node’s 
interest. Certainly, the interest of the node may change, and the 
expired data should not be kept in the cache forever. In our 
design, if an expired data item has not been refreshed for the 
duration of its original TTL time (set by the data center), it is 
removed from the cache.  
 

B. Probabilistic Delta Consistency 

    PDC, users can specify their consistency requirements in two 
orthogonal dimensions. The dimension along the x-axis 
specifies the value, which denotes the maximum acceptable 
deviation (in time, value, etc.) between the source data and the 
cache copies; the dimension along the y-axis specifies the 
probability p, which represents the minimum ratio of queries 
served by consistent cache copies. 
 
  B.1) Applying PDC 
 
 Users can flexibly specify their consistency requirements under 
the PDC model in different scenarios. For example, in the 
scenario discussed in Section 1, the user accessing stock prices 
can assure that the cached prices will not be too stale by 
specifying a small (e.g., 1 minute). Since he frequently checks 
the prices, he might be able to tolerate that a small portion of 
accesses not satisfying the requirement on. He can specify a p 
value slightly less than 100 percent (e.g., 95 percent). 
Meanwhile, the user accessing the weather forecast information 
can specify a large _ such as 2 hours, since the weather forecast 
information is relatively stable. The user may not check the 
weather information frequently. So, he may set a high p value 
such as 90 percent. In the other scenario, since the traffic 
information cannot change dramatically in a short time and the 
taxi driver may frequently access the traffic information, the 
driver may specify less stringent requirement on both the 
deviation  (e.g., 10 minutes) and the ratio p (e.g., 70 percent). 
 
 

C. The Flexible Combination Of Push And Pull Algorithm: 

   
 
   Details of the proposed Flexible Combination of Push and Pull 
(FCPP) algorithm are presented in this section. In FCPP, we 
consider a commonly used system model, where each data 
object is associated with a single node which can update the 
source data. This node is referred to as the data source. Each 
data object can be cached by a group of nodes called caching 
nodes. The data copies held by the caching nodes are called 
cache copies. There are mainly two basic mechanisms for 
achieving cache consistency: push and pull. Using push, the 
data source informs every caching node of the data update. 

Using pull, for each data access, a caching node sends a request 
to the data source to check if the cache copy is up-to-date. 
 
  C.1) Design Aspects 
 
   In designing FCPP, we focus on three design aspects, as discussed 
in detail below:   
 
Consistency Level.    
 
To enable users to flexibly trade cache consistency for reduced 
We need to provide them multiple consistency levels with fine 
granularity. We have addressed this issue in design of the PDC 
model. PDC enables the users to continuously tune their 
consistency requirements in two orthogonal dimensions. 
 
Update Delay. 
 
Existing schemes mainly focus on how cache consistency 
should be maintained after the data source node has updated the 
source data. In such schemes, the data source node can directly 
update the data without considering consistency maintenance. 
However, in many cases, the data source node can wait for 
certain time before updating the source data, as in the Two 
Phase Commit (2PC) protocol and the Lease protocol. The 
update delay can be utilized to further decrease the consistency 
maintenance cost, as in Lease. However, Lease does not provide 
any bound on how long the data source node needs to wait 
before updating the source data. Between the two extremes of 
no update delay an unbounded update delay, FCPP supports 
declarative update delay (denoted by a system parameter D). 
 
Consistency Control 
 
A simple but widely used approach to consistency control is to 
associate time-out values with cache copies. When the time-out 
values expire, the caching nodes renew the time-out values from 
the data source node. Upon a data update on the data source 
node, it first needs to push invalidations to the caching nodes. 
Since the invalidations may be lost, especially in dynamic 
wireless ad hoc networks, the caching nodes are required to send 
back the acknowledgments.  
 
 

Algorithm 1 FCPP on a caching node 
-----------------------------------------------------------------------------
- 
Upon receiving a query 
 
(1) IF (l > 0) serve the query with the cache copy; 
(2) ELSE // l has decreased to zero 
    (2.1) Send a RENEW message to renew the 

Timeout from the data source and update the 
Cache copy; 

J.Arumai Ruban et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3910-3916

3912



    (2.2) after l is renewed, serve the query with the 
Updated cache copy; 
 

Algorithm 2 FCPP on the data source 
-----------------------------------------------------------------------------
- 
When the source data is ready to be updated 
(1) Send an INV message to each caching node 

With positive l; 
(2) IF (receive an INV_ACK message for each 

INV message OR has waited for D seconds) 
      (2.1) update the source data; 
              Upon receiving a RENEW message from a 

 Caching node 
(3) Grant timeout with duration l and the source 

Data to the caching node;- 
 

 

 
Fig 5.1 The 3D design framework 

 
C.2) FCPP as a Generic Scheme 
   
  FCPP is a generic scheme, covering many existing schemes as 
its special cases:  

 When the data source node can always delay the 
update until it receives all the ACKs, or the time-out 
values on all unresponding caching nodes expire, 
FCPP provides Strong Consistency and covers the 
Lease protocol  as its special case. 

 When the time-out value l is set to zero, FCPP 
transforms to the Pull each read scheme. 

 When the data source node lets l be sufficiently large, 
FCPP transforms to the Push with ACK scheme. 
 

The key issue in tuning FCPP is to quantify the trade-off 
between consistency requirements PDC (ߜ, p) and the 
consistency maintenance cost. 

 

  D. The Flexible Combination of Push And Pull Algorithm: 

   D.1) Communication between Caching Nodes  

   The cached nodes are made to communicate such that their 
version numbers can be kept updated. This helps in maintaining 
consistency even if there is a missed acknowledgement. 
 

   D.1.1) Shortest Path Algorithm 

   Let the node at which we are starting be called the initial node. 
Let the distance of node Y be the distance from the initial 
node to Y. Dijkstra's algorithm will assign some initial distance 
values and will try to improve them step by step. 

1. Assign to every node a tentative distance value: set it to 
zero for our initial node and to infinity for all other 
nodes. 

2. Mark all nodes except the initial node as unvisited. Set 
the initial node as current. Create a set of the unvisited 
nodes called the unvisited set consisting of all the 
nodes except the initial node. 

3. For the current node, consider all of its unvisited 
neighbors and calculate their tentative distances. For 
example, if the current node A is marked with a 
distance of 6, and the edge connecting it with a 
neighbor B has length 2, then the distance to B 
(through A) will be 6+2=8. If this distance is less than 
the previously recorded distance, then overwrite that 
distance. Even though a neighbor has been examined, 
it is not marked as visited at this time, and it remains in 
the unvisited set. 

4. When we are done considering all of the neighbors of    
the current node, mark it as visited and remove it from 
the unvisited set. A visited node will never be checked 
again; its distance recorded now is final and minimal. 

5. The next current node will be the node marked with the     
lowest (tentative) distance in the unvisited set. 

6. If the unvisited set is empty, then stop. The algorithm 
has finished. Otherwise, set the unvisited node marked 
with the smallest tentative distance as the next "current 

node" and go back to step 3. 

   D.2) Using Replicating Cached Nodes  
 

   This module helps in providing the cached with the possibility 
to communicate with their peers the data that they have received 

J.Arumai Ruban et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3910-3916

3913



from the access point. This can be further made to communicate 
the invalidation messages and the timer settings. 

 
D.3)Optimization of Communication between Cached Nodes      
Using a Timer 

 
  This communication can be further optimized by using a timer 
to maintain the communication time between the access point 
and the cached nodes, and between the cached nodes. 

 

 

 

 

 
 
 
 
 
                     
 

Fig 6.1 Propagation in Ad Hoc Model 

 
 
 

 
                    

Fig 6.2 Using Replicating Cached Nodes 

 
D.4. INV Message 

  When a cached system receives an invalidation message, it can 
be made to pass this value to all its peers and hence the timer is 

updated for all the cached nodes. This helps in maintaining 
consistent and updated data among all the nodes. 
 
D.4.1) Virus Propagation Algorithm[10] 
 

 Receive data from Source node 
 
 All the other nodes that are present in the current 

network are listed 
 

 Every node is initially checked if it contains the 
updated data, if so the propagation is halted and 
the remaining nodes are checked for the updated 
data 

 
 If a node does not contain the updated data, then it 

is updated and the nodes that are connected to the 
currently updated node are analyzed.  

 
 This process of analyzing a node before attacking 

the node is called Pre scanning, which is used for 
Improved Target Selection performed by the 
Blaster algorithm[19]. 

 
 These processes are carried out by using the UDP 

connection instead of a TCP connection.  
 

 In addition to not having to go through a TCP 
handshake and not having to keep a state, sessions 
and sockets allocated, this also allowed for a faster 
updation of targets. 

 
 This process results in higher infection speed 

carried out by the Sapphire/Slammer worm [19]. 
 This process can be further optimized by analyzing 

only the nodes connected to the currently 
connected      nodes.  
 

 This can effectively reduce the time taken for 
analyzing the node that is not updated. This 
process is called Subdividing. 

 
 This process can be used for transmission of 

information through the network. 
 

 For every node receiving the message,  
       If  the node does not have the updated copy, 
       go back to step 2 
       Else makes it a dead end and 
       stops the data propagation. 

 

 

J.Arumai Ruban et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3910-3916

3914



D.5. Analysis of the Optimized Timeout Duration of FCPP: 
 
 In this section, we derive an analytic model to study the 
relationship between the timeout duration l and the consistency 
requirement PDC (δ, p), as well as the relationship between l 
and the traffic overhead. Then we calculate the optimized 
timeout duration which satisfies the user-specified PDC with 
minimum traffic overhead. In the analysis, we assume that the 
data update and the query follow Poisson Process. The number 
of hops counted in data transmission is used to measure the 
traffic overhead. 
 
Cost for Time-out Renewal.  
 
  When a query comes after the time-out value expires, the 
caching node first renews the time-out value to l, and then, 
serves the next l .r (on average) queries. Thus, for every l .r +1 
queries, there will be onetime-out renewal. So, we average the 
cost over the queries and obtain the expected renewal cost per 
unit time:  

2. h .N. r / (l.r+1) 
 
Cost for the INV & ACK Process.   
 
  Concerning the data updates, for every l .r +1 query on a cache 
copy, l.r of them occur when the time-out value is valid. The 
probability of having a valid time-out value is l .r / (l. r + 1). As 
long as the time-out value is valid, the data source node needs 
the INV & ACK process upon a data update. Thus, the expected 
INV & ACK cost per unit time is:  

2. h ..N. ω. l. r / (l.r+1) According to the discussions above, we 
obtain the total consistency maintenance cost per unit time: 
 

C=2N. h  
ାω..

.ାଵ
 =2r.N. h

ଵାω..

.ାଵ
 

 
The notations used in the analytical model are listed in Table 1. 

 
Table 1 Notations used in the analytical model 

 

 

 

 
IV .SCREENSHOTS 

 
PROPAGATION IN AD-HOC NETWORK

 
 
 
 

UDP  PACKET LOSS

 

 

IV. CONCLUSION 

     
   In this paper, we have addressed the problem of how to 
provide the users with flexibility in specifying their consistency 
requirements, and how to satisfy the flexible user-specified 
consistency requirements with minimum overhead. Toward this 
objective, our contributions can be described as follows: (1) we 
have proposed a general consistency model PDC, allowing users 
to flexibly specify their consistency requirements in two 

h  Average path length between data source 
node and caching node 

N No of caching nodes. 

ω Average data update rate. 

l Time out duration. 

r Average cache query rate 

J.Arumai Ruban et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3910-3916

3915



orthogonal dimensions; (2) we have developed the FCPP 
algorithm to maintain cache consistency under the PDC 
consistency model. FCPP flexibly and efficiently combines push 
and pull based on timeouts; (3) we have derived an analytical 
model for FCPP to calculate the optimized timeout duration, so 
as to provide user-specified PDC with minimum traffic 
overhead in IMANETs. In our future work, we will study how 
to enable efficient cooperation among the caching nodes, in 
order to further reduce the cache maintenance cost. We also plan 
to study how to satisfy heterogeneous consistency requirements 
of the users. 

REFERENCES 
[1]. Flexible Cache Consistency Maintenance over Wireless Ad Hoc Networks- 
IEEE transactions on parallel and distributed systems, vol. 21, no 8, august 
2010. 
 
[2]. L. Yin and G. Cao, “Supporting Cooperative Caching in Ad Hoc Networks,” 
IEEE Trans. Mobile Computing, vol. 5, no. 1, pp. 77-89,Jan. 2006. 
 
[3] .Y. Huang, J. Cao, Z. Wang, B. Jin, and Y. Feng, “Achieving Flexible Cache 
Consistency for Pervasive Internet Access,” Proc. Fifth Ann. IEEE Int’l Conf. 
Pervasive Computing and Comm. (Per Com), pp. 239-250, 2007 
 
[4]. P. Cao and C. Liu, “Maintaining Strong Cache Consistency in the World 
Wide Web,” IEEE Trans. Computers, vol. 47, no. 4, pp. 445-457, Apr. 1998.  
 
 
5] J. Cao, Y. Zhang, L. Xie and G. Cao, Data Consistency for Cooperative 
Caching in Mobile Environments, to appear in IEEE Computer. 
 
[6] V. Duvvuri, P. Shenoy and R. Tewari, Adaptive Leases: A Strong 
Consistency Mechanism for the World Wide Web, IEEE Trans. on Knowledge 
and Data Engineering, Vol. 15, No. 4, 2003. 
 
[7] J.Lan, X. Liu, P. Shenoy and K. Ramamritham,Consistency Maintenance in 
Peer-to-Peer File Sharing Networks, the 3rd IEEE Workshop on Internet 
Applications, 2003. 
 
[8] J. Cao, Y. Zhang, L. Xie, and G. Cao, Consistency of Cooperative Caching 
in Mobile Peer-to-Peer Systems Over MANET, Intl. J. of Parallel, Emergent, 
and Distributed Systems, Vol. 21, No. 3, June 2006. 
 
[9] Y. Huang, J. Cao and B. Jin, A Predictive Approach to Achieving

 

Consistency in Cooperative Caching in MANET, in Proc. of the 1st Intl. Conf. 
on Scalable Information Systems, P2PIM workshop session, ACM Press, New 
York, USA, 2006. 
 
[10] Simulating and optimising worm propagation algorithms Tom Vogt 
<tom@lemuria.org>29th September 2003 (updated 16th February 2004) 
 
[11] M. Corson, J. Macker and G. Cirincione, Internet-based Mobile Ad Hoc 
Networking, in IEEE Internet Computing, pp.63-70, July-August, 1999. 
 

 

First Author – Mr.J.Arumai Ruban,  He has Completed  
M.C.A from St.Joseph’s College Thiruchirappali on 2007-2010, 
TamilNadu, India .He is currently pursuing his M.E (Computer 
Science and Enginering) in Periyar Maniammai University, 
Thanjavur, TamilNadu, India. He has presented several papers 
in national and international conferences. 
rubsjoe@gmail.com 

 

 

Second Author – Mr. D.Selvam, Working as Assistant 
Professor in Periyar Maniammai University. Completed   BE 
(CSE) from Sri Krishna College of Engineering and 
Technology, Coimbatore on 1998-2002 and ME (CSE) through 
Gate 2006  from PSG TECH, Coimbatore on 2006-2008, He has 
published an international Journal in IJCA 2010 and presented 
several papers in  national  and international conferences. 
 seldurai999@gmail.com  

 
Third Author – Mr. L. Dinesh He received his M.Sc Degree [5 

y

ears Integrated] in Software Engineering from Anna 
University, TamilNadu, India and also Completed MBA in 
Human Resource and Finance. He is currently pursuing his M.E 
(Software Engineering) in Periyar Maniammai University, 
Thanjavur, TamilNadu, India. He has published an international 
Journal in IJCSI, November 2011 and presented several papers 
in international and national conferences. 
 l_dinuma@yahoo.co.in 

 
 

J.Arumai Ruban et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3910-3916

3916




